前回、1変数の二次関数の最大・最小値の求め方について解説しました。<参考:「2次関数の最大・最小値の問題の攻略」> 今回は、\(f(x,y)=ax^{2}+bx+cy^{2}+dy+e\) それでは最後に、本記事のポイントをまとめます。 二次関数の最大値・最小値を解くコツは、たったの $2$ つ! 二次関数は軸に対して線対称である。 軸と定義域の位置関係に着目する。 2次関数の最大値や最小値について学習しましょう。 最大値や最小値に関する問題は、関数を扱った問題の中でも頻出なので、しっかり理解しておきたいところです。 特に、今回は「2次関数のグラフの位 … まずは与えられた関数のグラフを描く。最大最小値を求める問題では必ずグラフを描くように心がけたい。というのもグラフが描ければ90%はクリアできたも同然だからだ。 グラフを描くにあたってまずは、y=2x²-4x-1 の頂点を求めていく。 二次関数の最大値・最小値に関するまとめ. 2変数関数の問題のアプローチ. a>0のとき下に凸のグラフなので、 頂点 が最下点で最上点は無い。 a>0 最小 a<0のとき上に凸のグラフなので、 頂点 が最上点で最下点は無い。 a<0 最大 定義域が制限されない場合の y=a(x-p) 2 +q の最大値最小値 a>0のとき x=pで最小値q, 最大値なし 二次関数の最大・最小問題は、とにかくグラフを書いて視覚的に理解していくことが大事です。 ここでは主に大学入試で出題されるであろう二次関数の最大・最小問題の5つのパターンとその解き方を、例題とともに詳しく解説していきます。 二次関数を対称移動したときの式の求め方を解説! 平行移動したものが2点を通る式を作る方法とは? どのように平行移動したら重なる?例題を使って問題解説! 二次関数の最大・最小の求め方をイチから解説していきます! 場合分け!